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Abstract— Surface electromyography (sEMG) has shown
considerable promise for controlling upper limb rehabilitation
exoskeletons. However, the significant inter-subject variability
in SEMG signals poses a challenge for developing models
that generalize effectively across individuals. A novel spatio-
temporal attention mechanism integrated with a lightweight
temporal convolutional network (STA-TCN) is proposed in this
paper to address this challenge and enable subject-independent
continuous motion prediction. By incorporating a dual-path
(spatial and temporal) attention mechanism, the spatial (muscle
channel) and temporal (movement phase) features related
to SEMG signals are selectively emphasized, eliminating the
need for subject-specific retraining. A Cable-driven Upper-
Limb Rehabilitation Exoskeleton (CURE) is designed, for which
continuous motion prediction was employed. An experiment
with 6 participants demonstrated that STA-TCN outperforms
traditional models in continuously predicting elbow angles,
achieving lower root mean square error (RMSE) (14.77° vs
15.25°) and R? values approaching the current highest results
(0.91 vs 0.93) across users. The method also met real-time
processing requirements with a latency of 1.5 ms per prediction,
making it suitable for deployment in real-time rehabilitation
robotics. The proposed method can provide an effective solution
for personalized and adaptable robotic rehabilitation systems,
enhancing motion prediction accuracy without dependency on
individual calibration.

Index Terms— Continuous motion prediction, Spatio-
temporal attention, Temporal Convolutional Network (TCN),
Upper limb rehabilitation exoskeloton, Surface electromyogra-
phy GEMG)

I. INTRODUCTION

Stroke is a leading cause of disability worldwide, often
resulting in upper limb hemiplegia that severely impacts daily
activities and quality of life [1]. Early intensive rehabilitation
is crucial for recovery [2], but traditional therapy requires
prolonged, supervised training, creating financial and phys-
ical burdens for patients, families, and therapists [3]. This
highlights the need for innovative rehabilitation methods
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that provide effective, individualized therapy with reduced
dependency on constant professional supervision.

Robotic rehabilitation devices, such as exoskeletons, have
emerged as promising solutions to these challenges, as they
facilitate repetitive, precise, and quantitatively assessable
rehabilitation training [4]. Effective interaction between in-
dividuals and these rehabilitation systems critically depends
on accurately decoding neural intent to translate physiolog-
ical signals into actionable robotic commands in real-time.
Surface electromyography (SEMG) signals, due to their ease
of collection and high temporal resolution, have become
a widely used physiological signal in exoskeleton devices,
facilitating effective control and interaction between users
and robotic systems.

Neural signal decoding methods have evolved signifi-
cantly, with recent advancements addressing key challenges
in accuracy and generalization [5]. Earlier studies often relied
on biomechanical modeling or traditional machine learning
techniques, and these approaches faced limitations due to
complex parameter estimation and sensitivity to individual
variability [6]. Recently, deep learning-based methods have
made significant advances in the field, offering effective tools
for modeling the complex, high-dimensional, and temporal
relationships inherent in SEMG data, leading to improved
accuracy and robustness in decoding motion intentions [7]
[8] [9] [10]. Bao et al. [11] proposed a CNN-LSTM hybrid
model that first extracts deep spatial features from sEMG
signals using CNN, followed by LSTM-based sequence
regression to capture long-term temporal dependencies, sig-
nificantly improving wrist kinematics estimation accuracy
compared to standalone CNN or LSTM models. Zanghieri
et al. [12] proposed a lightweight Temporal Convolutional
Network (TCN) for sSEMG-based hand kinematics regression,
achieving high accuracy and maintain a minimal memory
footprint, outperforming recurrent models in motion estima-
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tion. Zabihi et al. [13] proposed the TraHGR framework,
a Transformer-based hybrid architecture for hand gesture
recognition using sEMG signals. By integrating parallel
temporal and feature Transformer networks, their approach
enhanced classification accuracy over existing deep learning
models and improved robustness to signal variability. Zhang
et al. [14] combined multichannel EMG signal features with
a Kalman filter to estimate continuous pronation-supination
movements. Their hybrid approach achieved high accuracy in
real-time exoskeleton control, demonstrating the potential of
integrating deep learning with traditional filtering techniques.
Wau et al. [15] used reinforcement learning to estimate joint
moments with sEMG, improving accuracy and reducing
reliance on extensive training data.

Despite these diversified advancements, deep learning
(DL)-based methods are still subject to limitations in inter-
subject generalization and real-time adaptability due to sig-
nificant inter-subject variability in neuromuscular patterns,
anatomical differences, and electrode placement variations
[7]. Various strategies have been explored to enhance gener-
alization of DL-based method. Li et al. [8] proposed a two-
stage genetic algorithm (GA)-based feature selection (TS-
GAFS) method, which applies the minimum redundancy
maximum relevance (mRMR) criterion to select invariant
features, improving the independence of sSEMG-based move-
ment estimation. However, this method still relies on pre-
defined feature sets, limiting its adaptability to dynamic
variations in muscle activation across individuals. Long et
al. [16] introduced transfer learning strategies, including
fine-tuning pre-trained models with new subject data, which
enhanced generalization but required labeled data from each
new user, restricting real-world applicability. Li et al. [9]
applied a multi-source domain adaptation (MDA) approach
to reduce domain shift by learning invariant features from
multiple users, achieving improved generalization. However,
the method required substantial computational resources,
leading to excessive delays that restrained real-time predic-
tion.

In summary, the existing research on sEMG decoding
faces the following challenges:

1) Real-time efficiency: Many models require high com-
putational resources, limiting portability and immedi-
ate applicability.

2) Cross-subject variability: High variability in sEMG
signals necessitates user-specific calibration, restricting
generalization to new users.

This paper addresses the challenge of inter-subject gen-
eralization in sEMG-based continuous motion prediction
for upper limb rehabilitation by proposing a novel spatio-
temporal attention mechanism that does not rely on target
user data and can meet the requirement of real-time ap-
plication. Inspired by recent successes in video captioning
[17] and location recommendation tasks [18], the attention
mechanism independently computes and integrates spatio-
temporal attention to selectively emphasize relevant signal
features spatially (across muscle channels) and temporally
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(across time segments). The proposed method can extract
user-invariant features from sEMG signals without requiring
prior calibration or fine-tuning for each individual. The
lightweight TCN architecture integrated into the model en-
sures computational efficiency, enabling seamless real-time
processing while maintaining high decoding accuracy.

The main contributions of this paper are as follows:

1) Proposed a spatio-temporal attention mechanism
specifically designed for sSEMG-based continuous mo-
tion prediction to improve cross-subject generalization.
Development and integration of this attention mech-
anism with a lightweight TCN model, achieving ac-
curate, real-time continuous angle estimation across
multiple users without subject-specific retraining.

2)

The remainder of this paper is organized as follows:
Section II details the methods, including system setup and
the proposed model architecture; Section III presents ex-
perimental results; Section IV discusses the findings and
implications; and Section V concludes the proposed STA-
TCN method.

II. PROPOSED METHODS
A. Upper Limb Rehabilitation Exoskeleton Overview

Surface electromyography (sEMG) signals have been
widely applied for real-time joint angle estimation, facilitat-
ing intuitive control of upper limb rehabilitation devices. In
this paper, the proposed trajectory planning and rehabilitation
strategy is verified using an upper limb robot named CURE
shown in Fig. 1.

Shoulder and Chest Strap

Fig. 1 Upper limb exoskeleton device.

CURE is designed as a portable, home-based rehabilitation
system capable of assisting three degrees of freedom (DoFs):
elbow flexion/extension, wrist flexion/extension, and wrist
supination/pronation, while also accommodating three pas-
sive DoFs at the shoulder joint. A cable-driven mechanism
is employed for its lightweight nature and flexibility, allow-
ing motors to be positioned away from the exoskeleton’s
moving components to minimize direct weight burden on
the user’s arm. Four compact motors are secured on a
supportive backboard, worn comfortably by users via waist
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and shoulder straps. Specifically, one motor drives elbow
flexion/extension, while three servo motors facilitate wrist
movements.

To enhance intuitive robotic assistance based on user
intention, we developed a real-time SEMG control system
comprising four key components: (1) Signal preprocessing
using embedded Myo device filters (Butterworth high-pass,
notch, and normalization) combined with RMS sliding win-
dow filtering; (2) A Lite Temporal Convolutional Network
with spatio-temporal attention mechanisms; (3) Regression
layer mapping 256-channel features to motion outputs; (4)
Quantitative evaluation through MAE, RMSE , and R? met-
rics. The workflow progresses sequentially from raw sEMG
acquisition to real-time performance validation.

B. Experimental Protocol

1) Participants: A total of six healthy adults—three males
and three females, aged 22 to 25—were enrolled in this
research. None reported any history of neuromuscular dis-
orders. Each volunteer, labeled A through F. All participants
received an explanation of the experimental procedure and
signed an informed consent form.

2) Experimental Setup: The data acquisition platform,
shown in Fig. 2, employs a Myo armband (Thalmic Labs
Inc.) fitted with eight evenly spaced sEMG sensors. Fig. 2
(b) illustrates the placement of these electrodes on the
armband. The Myo device transmits SEMG signals wirelessly
via Bluetooth Low Energy (BLE) to a computer, and data
are sampled in real time at 200Hz using the Myo SDK.
An Inertial Measurement Unit IMU) (JY901, WIT Motion,
Shenzhen, China; as shown in Fig. 2(c)) was attached to the
forearm and sampled at 20 Hz to record elbow motion for
validating SEMG-based predictions.

1 Upper computer of JY901
——

Matlab interface of Myo {

| S -

(b) Electrode arrangement.

N7

A
| 22N
Wi HAE
(c) The IMU sensor.

Myo armband

5

(a) Schematic of the experimental
data acquisition.

Fig. 2 (a) Schematic of the experimental data acquisition. (b)
Electrode arrangement. (c) The IMU sensor.

3) Channel Selection for Myo Armband: In accordance
with the recommendation in [19], three channels were
deemed optimal. Consequently, channels 4, 7, and 1 were
selected, corresponding respectively to the biceps, triceps
(long head), and triceps (lateral head).
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4) Data Acquisition: Participants performed a synchro-
nization movement, confirmed by tactile feedback and a solid
LED indicator, to ensure stable electrode-muscle contact.
Each one-minute trial consisted of resting, elbow flexion-
extension, and a return to rest, repeated five times with two-
minute breaks to prevent fatigue.

5) sEMG Signal Preprocessing: Raw SEMG signals are
weak and prone to noise, requiring preprocessing for reliable
analysis. The Myo armband includes a built-in 50 Hz notch
filter to eliminate power line interference and the Myo SDK
provides pre-normalized signals in the range of [—1,1].
A fourth-order Butterworth high-pass filter at 20Hz was
applied to remove DC offset and low-frequency noise. To
account for the non-stationary nature of SEMG, a sliding
window Root Mean Square (RMS) filter was used to extract
muscle activation intensity. For each selected channel (1,
4, 7), signals were smoothed over a 100-sample (0.55)
window, and square-rooted to obtain the RMS envelope used
in subsequent analysis.

C. Modeling and Angle Estimation of the CURE

To address cross-subject variability in SEMG-based joint
angle estimation, we propose a hierarchical architecture in-
tegrating dual attention pathways with temporal convolution
operations (Fig. 3). Key innovations include:

o Decoupled spatio-temporal attention pathways captur-

ing spatial and temporal dependencies

o Lightweight temporal convolutional backbone opti-

mized for real-time processing.

1) Spatio-Temporal Attention Mechanism:

a) Spatial Attention Pathway: The spatial attention
pathway models neuromuscular activation patterns through
learnable channel interactions. The spatial attention weights
as € R® are computed via multi-scale temporal convolution
followed by channel bottleneck projection:

(1)

where Conv1D;5 denotes 15-tap temporal convolution with
padding, and P, : R64*T — REXT represents the bottleneck
projection through 1 x 1 convolutions. This design captures
inter-channel muscle synergies.

b) Temporal Attention Pathway: The temporal attention
pathway employs relative positional encoding P, € RT*T
to model phase continuity in limb movements. The attention
computation is formulated as:

ag = Sigmoid (Pb (Conv1D15(X))) ,

Qi K[
Vi

where queries ¢, keys Ky, and values V; are derived from
layer-normalized input features. The positional encoding
matrix P, is learned through gradient descent, enabling au-
tomatic discovery of movement phase relationships without
explicit kinematic constraints.

The temporal features are obtained through value aggre-
gation:

A, = Softmax( + Pt> Vi, 2)

Xy = A, V. 3)
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Fig. 3 Dual-path spatio-temporal attention network with hierarchical temporal convolutions.

c) Adaptive Feature Fusion: The spatial and temporal
attention features are combined through parametric fusion
with residual connections:

Xfusion =7 (as®X5)+(1 _’7) Xt+PT(X) (4)

where dynamic coefficient vy € [0, 1] automatically balances
spatial muscle synergy and temporal phase features.

2) Lightweight Temporal Network:

a) Depthwise separable convolutions with geometric
dilation:
L
DSConv(k =15,d=2"""), RF=1+) 14-2"7" (5)
i=1
With kernel size k& = 15 and dilation rates d = [2°, 21, 22,
this achieves a 425 ms temporal window (at 200 Hz sampling
rate), enabling effective modeling of complete movement
cycles.
b) Bottleneck Architecture: Channel expansion 32 —
64 — 128 — 256 prevents overfitting while maintaining
feature abstraction.

3) Implementation Details: The model was implemented
in PyTorch with mixed-precision training (FP16/FP32) and
optimized using AdamW (5; = 0.9, B2 = 0.999) with
cosine annealing learning rate scheduling (7;,,4, = 100). The
temporal convolutional blocks employ dropout (p = 0.1) and
batch normalization for regularization.

4) Evaluation Criteria: For quantitative evaluation, the
selected criteria include the Root Mean Square Error
(RMSE), Mean Absolute Error (MAE), and the coefficient
of determination (R?).

III. EXPERIMENTAL RESULTS

This section presents the evaluation of the proposed STA-
TCN model’s performance through offline experiments. A
baseline TCN model is used as the primary benchmark,
with comparisons made against other existing approaches
for a comprehensive performance analysis. All experiments
were conducted on a Linux server running Ubuntu and
equipped with an NVIDIA GeForce RTX 4090 GPU. Model
training and inference were implemented in Python using the
PyTorch framework, while raw SEMG data from the Myo
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armband was transmitted via Bluetooth Low Energy (BLE)
for integration with the exoskeleton control system.

A. Comparative Performance with Baseline

A direct comparison was conducted between the proposed
STA-TCN approach and a baseline TCN model to assess
predictive performance in estimating joint angles from sSEMG
signals. As shown in Table I, STA-TCN achieves signifi-
cantly lower Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE) while attaining a higher coefficient of
determination (R?), demonstrating superior performance in
both error reduction and variance explanation.

TABLE 1
PERFORMANCE COMPARISON BETWEEN THE PROPOSED STA-TCN
AND THE BASELINE TCN

Method MAE RMSE R?
STA-TCN 11.53° 14.77° 0.91
TCN 17.04° 21.27° 0.89

Fig. 4 further illustrates the comparative results and un-
derlying mechanisms. The columns (a, d, g), (b, e, h), and
(c, f, 1) correspond to data from three distinct subjects
respectively. Subfigures (a)—(c) display the predicted and
ground-truth angles for both STA-TCN and TCN under
representative motion sequences. Subfigures (d)—(f) quantify
the error differences between methods. Subfigures (g)—(i)
represent the attention-weight heatmaps derived from the
STA module, underscoring how the network emphasizes
consistent movement patterns while effectively downplaying
subject variability.

B. Comparison with Existing Studies

Beyond the baseline assessment, additional comparisons
were made to prior research on sEMG-driven joint angle
estimation, illustrating how our method surpasses established
approaches (Table II). The proposed model demonstrates
lower RMSE and superior R? values, highlighting its ef-
fectiveness in decoding multi-channel sSEMG.

Notably, our model achieves an RMSE of 14.77°, out-
performing several alternative methods in terms of both
prediction accuracy and stability. Furthermore, the R? value
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Fig. 4 Outcomes comparison and attention patterns from three subjects. Subfigures (a)—(c): predicted joint angles of STA-TCN and TCN
versus ground-truth data. Subfigures (d)—(f): error distributions of the two methods. Subfigures (g)—(i): STA attention heatmaps.

TABLE II

COMPARATIVE RESULTS WITH OTHER METHODS
Method RMSE R?
Yang [20] 20.44° 0.89
Li [8] 17.40° 0.90
Li [10] 15.25° 0.93
Zhao [21] 17.59° 0.91
This Paper 14.77° 0.91

of 0.91 highlights a strong correlation between the estimated
and ground-truth angles, emphasizing the robustness of our
model’s performance across different subjects.

IV. DISCUSSION

This study introduces a novel spatio-temporal attention
mechanism integrated with a lightweight Temporal Convolu-
tional Network (STA-TCN) for real-time, cross-subject joint
angle estimation using surface electromyography (sEMG)
signals. The experimental results demonstrate that the pro-
posed method outperforms both a baseline Temporal Convo-
Iutional Network (TCN) and several approaches in terms of
RMSE and R2.

A direct comparison between the STA-TCN model and
the baseline TCN model revealed significant improvements
in joint angle estimation accuracy. As shown in Table I, STA-
TCN achieved a reduction in Mean Absolute Error (MAE)
from 17.04° to 11.53° and a reduction in Root Mean Square
Error (RMSE) from 21.27° to 14.77°. In addition, the R?
value for STA-TCN was 0.91, surpassing the baseline TCN’s
R? of 0.89. These results highlight the superior performance
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of the proposed spatio-temporal attention mechanism in
capturing complex, high-dimensional relationships within the
SEMG signals. The attention mechanism helps the model
selectively focus on relevant features both spatially (across
muscle channels) and temporally (across time segments),
leading to improved accuracy in predicting joint angles.

In addition to some indicators of prediction accuracy,
this method also outperforms some existing methods in
terms of generalizability and real-time performance. Yang
et al’s approach requires individual training, limiting its
ability to generalize across different users. Li et al. [10]
did not explicitly address the challenge of generalization
across different subjects, as it was evaluated only on a
small, fixed group of participants. In contrast, the proposed
STA-TCN method demonstrated strong generalization across
multiple subjects, as verified by the leave-one-out experiment
we used, which covered six different participants without
the need for specific retraining for each individual. Li et
al. [9] introduced a multi-source domain adaptation (MDA)
approach to enhance generalization across subjects. While
their method showed promising results, it suffered from
high computational complexity, resulting in serious delay
and cannot meet the requirements of HRIs. This limitation
makes their approach unsuitable for real-time rehabilitation
applications where low latency is critical. In contrast, our
method achieves real-time performance with 1.5 ms latency
per IMU angle prediction on 1500-sample input sequences
when running on an NVIDIA GeForce RTX 4090 GPU. This
low-latency processing meets the real-time requirements for

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on September 03,2025 at 05:20:19 UTC from IEEE Xplore. Restrictions apply.



prosthetic control, making our method suitable for practical
rehabilitation systems.

Despite the promising results, the proposed method cur-
rently has some limitations. The model was validated and
run on a GPU and had not yet been implemented on
portable hardware, such as embedded systems or edge de-
vices. Deploying the model on lightweight, portable devices
would make it more suitable for home-based rehabilitation
applications. Additionally, this method has been validated
only for simple periodic movements of the elbow joint,
which involves relatively few muscles. It remains unclear
whether this approach can achieve comparable performance
in situations involving other joints with more and redun-
dant muscles, or if the movements become random or less
structured. Exploring the model’s effectiveness in these more
complex scenarios presents an important direction for future
research.

V. CONCLUSION

This paper proposed the spatial temporal attention and
light-weight temporal convolutional network (STA-TCN)
model to improve joint angle estimation in upper limb
rehabilitation systems. The proposed method effectively ad-
dressed the challenges of inter-subject variability and real-
time estimation, offering superior performance in both pre-
diction accuracy and generalization across multiple subjects.
By leveraging spatio-temporal attention, the model selec-
tively emphasized relevant features in SEMG signals, leading
to more precise motion estimation without the need for
subject-specific retraining. Specifically, the STA-TCN model
achieved an RMSE of 14.77°, outperforming the TCN-only
model’s RMSE of 21.27°. The integration of the lightweight
TCN architecture ensured computational efficiency, with
only 1.5 ms latency per angle prediction, making the model
suitable for real-time applications in robotic rehabilitation.
Future work will focus on its deployment on portable,
embedded devices, as well as investigating the model’s
performance on more complex joints and less structured
movements.
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